第P6周-Pytorch实现好莱坞明星识别(VGG16)

idefeng
发布于 2025-01-24 / 15 阅读
0
0

第P6周-Pytorch实现好莱坞明星识别(VGG16)

目标

具体实现

(一)环境

语言环境:Python 3.10
编 译 器: PyCharm
框 架: Pytorch

(二)具体步骤

1. Utils.py
import torch  
import pathlib  
import matplotlib.pyplot as plt  
from torchvision.transforms import transforms  
  
  
# 第一步:设置GPU  
def USE_GPU():  
    if torch.cuda.is_available():  
        print('CUDA is available, will use GPU')  
        device = torch.device("cuda")  
    else:  
        print('CUDA is not available. Will use CPU')  
        device = torch.device("cpu")  
  
    return device  
  
temp_dict = dict()  
def recursive_iterate(path):  
    """  
    根据所提供的路径遍历该路径下的所有子目录,列出所有子目录下的文件  
    :param path: 路径  
    :return: 返回最后一级目录的数据  
    """    path = pathlib.Path(path)  
    for file in path.iterdir():  
        if file.is_file():  
            temp_key = str(file).split('\\')[-2]  
            if temp_key in temp_dict:  
                temp_dict.update({temp_key: temp_dict[temp_key] + 1})  
            else:  
                temp_dict.update({temp_key: 1})  
            # print(file)  
        elif file.is_dir():  
            recursive_iterate(file)  
  
    return temp_dict  
  
  
def data_from_directory(directory, train_dir=None, test_dir=None, show=False):  
    """  
    提供是的数据集是文件形式的,提供目录方式导入数据,简单分析数据并返回数据分类  
    :param test_dir: 是否设置了测试集目录  
    :param train_dir: 是否设置了训练集目录  
    :param directory: 数据集所在目录  
    :param show: 是否需要以柱状图形式显示数据分类情况,默认显示  
    :return: 数据分类列表,类型: list  
    """    global total_image  
    print("数据目录:{}".format(directory))  
    data_dir = pathlib.Path(directory)  
  
    # for d in data_dir.glob('**/*'): # **/*通配符可以遍历所有子目录  
    #     if d.is_dir():  
    #         print(d)    class_name = []  
    total_image = 0  
    temp_sum = 0  
  
    if train_dir is None or test_dir is None:  
        data_path = list(data_dir.glob('*'))  
        class_name = [str(path).split('\\')[-1] for path in data_path]  
        print("数据分类: {}, 类别数量:{}".format(class_name, len(list(data_dir.glob('*')))))  
        total_image = len(list(data_dir.glob('*/*')))  
        print("图片数据总数: {}".format(total_image))  
    else:  
        temp_dict.clear()  
        train_data_path = directory + '/' + train_dir  
        train_data_info = recursive_iterate(train_data_path)  
        print("{}目录:{},{}".format(train_dir, train_data_path, train_data_info))  
  
        temp_dict.clear()  
        test_data_path = directory + '/' + test_dir  
        print("{}目录:{},{}".format(test_dir,  test_data_path, recursive_iterate(test_data_path)))  
        class_name = temp_dict.keys()  
  
    if show:  
        # 隐藏警告  
        import warnings  
        warnings.filterwarnings("ignore")  # 忽略警告信息  
        plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签  
        plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号  
        plt.rcParams['figure.dpi'] = 100  # 分辨率  
  
        for i in class_name:  
            data = len(list(pathlib.Path((directory + '\\' + i + '\\')).glob('*')))  
            plt.title('数据分类情况')  
            plt.grid(ls='--', alpha=0.5)  
            plt.bar(i, data)  
            plt.text(i, data, str(data), ha='center', va='bottom')  
            print("类别-{}:{}".format(i, data))  
            temp_sum += data  
        plt.show()  
  
    if temp_sum == total_image:  
        print("图片数据总数检查一致")  
    else:  
        print("数据数据总数检查不一致,请检查数据集是否正确!")  
    return class_name  
  
  
def get_transforms_setting(size):  
    """  
    获取transforms的初始设置  
    :param size: 图片大小  
    :return: transforms.compose设置  
    """    transform_setting = {  
        'train': transforms.Compose([  
            transforms.Resize(size),  
            transforms.ToTensor(),  
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
        ]),  
        'test': transforms.Compose([  
            transforms.Resize(size),  
            transforms.ToTensor(),  
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
        ])  
    }  
  
    return transform_setting  
  
  
# 训练循环  
def train(dataloader, device, model, loss_fn, optimizer):  
    size = len(dataloader.dataset)  # 训练集的大小  
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)  
  
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率  
  
    for X, y in dataloader:  # 获取图片及其标签  
        X, y = X.to(device), y.to(device)  
  
        # 计算预测误差  
        pred = model(X)  # 网络输出  
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失  
  
        # 反向传播  
        optimizer.zero_grad()  # grad属性归零  
        loss.backward()  # 反向传播  
        optimizer.step()  # 每一步自动更新  
  
        # 记录acc与loss  
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()  
        train_loss += loss.item()  
  
    train_acc /= size  
    train_loss /= num_batches  
  
    return train_acc, train_loss  
  
  
def test(dataloader, device, model, loss_fn):  
    size = len(dataloader.dataset)  # 测试集的大小  
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)  
    test_loss, test_acc = 0, 0  
  
    # 当不进行训练时,停止梯度更新,节省计算内存消耗  
    with torch.no_grad():  
        for imgs, target in dataloader:  
            imgs, target = imgs.to(device), target.to(device)  
  
            # 计算loss  
            target_pred = model(imgs)  
            loss = loss_fn(target_pred, target)  
  
            test_loss += loss.item()  
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()  
  
    test_acc /= size  
    test_loss /= num_batches  
  
    return test_acc, test_loss
2. config.py
import argparse  
  
def get_options(parser=argparse.ArgumentParser()):  
    parser.add_argument('--workers', type=int, default=0, help='Number of parallel workers')  
    parser.add_argument('--batch-size', type=int, default=32, help='input batch size, default=32')  
    parser.add_argument('--lr', type=float, default=1e-4, help='learning rate, default=0.0001')  
    parser.add_argument('--epochs', type=int, default=50, help='number of epochs')  
    parser.add_argument('--seed', type=int, default=112, help='random seed')  
    parser.add_argument('--save-path', type=str, default='./models/', help='path to save checkpoints')  
  
    opt = parser.parse_args()  
  
    if opt:  
        print(f'num_workers:{opt.workers}')  
        print(f'batch_size:{opt.batch_size}')  
        print(f'learn rate:{opt.lr}')  
        print(f'epochs:{opt.epochs}')  
        print(f'random seed:{opt.seed}')  
        print(f'save_path:{opt.save_path}')  
  
    return opt  
  
if __name__ == '__main__':  
    opt = get_options()
**3.**main.py
from torch import nn  
from torchvision import datasets  
  
from Utils import USE_GPU, data_from_directory, get_transforms_setting, train, test  
import torch  
import os, PIL, pathlib  
from model import Model_Shoes  
  
import config  
  
opt = config.get_options()  
print(opt)  
  
device = USE_GPU()  
  
DATA_DIR = './data/hollywood'  
classNames = data_from_directory(DATA_DIR)  
print(list(classNames))  
  
transforms_setting = get_transforms_setting([224, 224])  
total_data = datasets.ImageFolder(DATA_DIR, transforms_setting['train'])  
print(total_data.class_to_idx)  
  
train_size = int(0.8 * len(total_data))  
test_size  = len(total_data) - train_size  
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])  
print(train_dataset, test_dataset)  
  
batch_size = opt.batch_size  
  
train_dl = torch.utils.data.DataLoader(train_dataset,  
                                           batch_size=batch_size,  
                                           shuffle=True  
                                           )  
test_dl = torch.utils.data.DataLoader(test_dataset,  
                                          batch_size=batch_size,  
                                          shuffle=True)  
  
for X, y in test_dl:  
    print("Shape of X [N, C, H, W]: ", X.shape)  
    print("Shape of y: ", y.shape, y.dtype)  
    break  
  
# 调用官方VGG16模型  
from torchvision.models import vgg16  
  
device = "cuda" if torch.cuda.is_available() else "cpu"  
print("Using {} device".format(device))  
  
# 加载预训练模型,并且对模型进行微调  
model = vgg16(pretrained=True).to(device)  # 加载预训练的vgg16模型  
  
for param in model.parameters():  
    param.requires_grad = False  # 冻结模型的参数,这样子在训练的时候只训练最后一层的参数  
  
# 修改classifier模块的第6层(即:(6): Linear(in_features=4096, out_features=2, bias=True))  
# 注意查看我们下方打印出来的模型  
model.classifier._modules['6'] = nn.Linear(4096, len(classNames))  # 修改vgg16模型中最后一层全连接层,输出目标类别个数  
model.to(device)  
print(model)  
  
  
  
learn_rate = 1e-4 # 初始学习率  
  
# 调用官方动态学习率接口时使用  
lambda1 = lambda epoch: 0.92 ** (epoch // 4)  
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)  
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法  
  
import copy  
  
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数  
epochs = 40  
  
train_loss = []  
train_acc = []  
test_loss = []  
test_acc = []  
  
best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标  
  
for epoch in range(epochs):  
    model.train()  
    epoch_train_acc, epoch_train_loss = train(train_dl, device, model, loss_fn, optimizer)  
    scheduler.step()  # 更新学习率(调用官方动态学习率接口时使用)  
  
    model.eval()  
    epoch_test_acc, epoch_test_loss = test(test_dl, device, model, loss_fn)  
  
    # 保存最佳模型到 best_model    if epoch_test_acc > best_acc:  
        best_acc = epoch_test_acc  
        best_model = copy.deepcopy(model)  
  
    train_acc.append(epoch_train_acc)  
    train_loss.append(epoch_train_loss)  
    test_acc.append(epoch_test_acc)  
    test_loss.append(epoch_test_loss)  
  
    # 获取当前的学习率  
    lr = optimizer.state_dict()['param_groups'][0]['lr']  
  
    template = 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}'  
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,  
                          epoch_test_acc * 100, epoch_test_loss, lr))  
  
# 保存最佳模型到文件中  
PATH = './best_model.pth'  # 保存的参数文件名  
torch.save(model.state_dict(), PATH)  
  
print('Done')  
  
import matplotlib.pyplot as plt  
#隐藏警告  
import warnings  
warnings.filterwarnings("ignore")               #忽略警告信息  
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签  
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号  
plt.rcParams['figure.dpi']         = 100        #分辨率  
  
from datetime import datetime  
current_time = datetime.now() # 获取当前时间  
  
epochs_range = range(epochs)  
  
plt.figure(figsize=(12, 3))  
plt.subplot(1, 2, 1)  
  
plt.plot(epochs_range, train_acc, label='Training Accuracy')  
plt.plot(epochs_range, test_acc, label='Test Accuracy')  
plt.legend(loc='lower right')  
plt.title('Training and Validation Accuracy')  
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效  
  
plt.subplot(1, 2, 2)  
plt.plot(epochs_range, train_loss, label='Training Loss')  
plt.plot(epochs_range, test_loss, label='Test Loss')  
plt.legend(loc='upper right')  
plt.title('Training and Validation Loss')  
plt.show()  
  
from PIL import Image  
  
classes = list(total_data.class_to_idx)  
  
  
def predict_one_image(image_path, model, transform, classes):  
    test_img = Image.open(image_path).convert('RGB')  
    plt.imshow(test_img)  # 展示预测的图片  
  
    test_img = transform(test_img)  
    img = test_img.to(device).unsqueeze(0)  
  
    model.eval()  
    output = model(img)  
  
    _, pred = torch.max(output, 1)  
    pred_class = classes[pred]  
    print(f'预测结果是:{pred_class}')  
  
# 预测训练集中的某张照片  
predict_one_image(image_path='./data/hollywood/Angelina Jolie/003_57612506.jpg',  
                  model=model,  
                  transform=transforms_setting['train'],  
                  classes=classes)  
  
best_model.eval()  
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)  
print(epoch_test_acc, epoch_test_loss)

结果:Test_acc:18.9%
image.png

(三)总结

  1. 超参数:batch_size=64, epoches=50 结果:Test_acc:16.1%
    image.png
  2. 修改学习率:0.0002 结果:Test_acc:25.3%
    image.png

评论