第P8周-Pytroch下YOLOv5-C3模块实现

idefeng
发布于 2025-02-13 / 10 阅读
0
0

第P8周-Pytroch下YOLOv5-C3模块实现

具体实现

(一)环境

语言环境:Python 3.10
编 译 器: PyCharm
框 架: Pytorch

(二)具体步骤

1. Utils.py
import torch  
import pathlib  
import matplotlib.pyplot as plt  
from torchvision.transforms import transforms  
  
  
# 第一步:设置GPU  
def USE_GPU():  
    if torch.cuda.is_available():  
        print('CUDA is available, will use GPU')  
        device = torch.device("cuda")  
    else:  
        print('CUDA is not available. Will use CPU')  
        device = torch.device("cpu")  
  
    return device  
  
temp_dict = dict()  
def recursive_iterate(path):  
    """  
    根据所提供的路径遍历该路径下的所有子目录,列出所有子目录下的文件  
    :param path: 路径  
    :return: 返回最后一级目录的数据  
    """    path = pathlib.Path(path)  
    for file in path.iterdir():  
        if file.is_file():  
            temp_key = str(file).split('\\')[-2]  
            if temp_key in temp_dict:  
                temp_dict.update({temp_key: temp_dict[temp_key] + 1})  
            else:  
                temp_dict.update({temp_key: 1})  
            # print(file)  
        elif file.is_dir():  
            recursive_iterate(file)  
  
    return temp_dict  
  
  
def data_from_directory(directory, train_dir=None, test_dir=None, show=False):  
    """  
    提供是的数据集是文件形式的,提供目录方式导入数据,简单分析数据并返回数据分类  
    :param test_dir: 是否设置了测试集目录  
    :param train_dir: 是否设置了训练集目录  
    :param directory: 数据集所在目录  
    :param show: 是否需要以柱状图形式显示数据分类情况,默认显示  
    :return: 数据分类列表,类型: list  
    """    global total_image  
    print("数据目录:{}".format(directory))  
    data_dir = pathlib.Path(directory)  
  
    # for d in data_dir.glob('**/*'): # **/*通配符可以遍历所有子目录  
    #     if d.is_dir():  
    #         print(d)    class_name = []  
    total_image = 0  
    # temp_sum = 0  
  
    if train_dir is None or test_dir is None:  
        data_path = list(data_dir.glob('*'))  
        class_name = [str(path).split('\\')[-1] for path in data_path]  
        print("数据分类: {}, 类别数量:{}".format(class_name, len(list(data_dir.glob('*')))))  
        total_image = len(list(data_dir.glob('*/*')))  
        print("图片数据总数: {}".format(total_image))  
    else:  
        temp_dict.clear()  
        train_data_path = directory + '/' + train_dir  
        train_data_info = recursive_iterate(train_data_path)  
        print("{}目录:{},{}".format(train_dir, train_data_path, train_data_info))  
  
        temp_dict.clear()  
        test_data_path = directory + '/' + test_dir  
        print("{}目录:{},{}".format(test_dir,  test_data_path, recursive_iterate(test_data_path)))  
        class_name = temp_dict.keys()  
  
    if show:  
        # 隐藏警告  
        import warnings  
        warnings.filterwarnings("ignore")  # 忽略警告信息  
        plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签  
        plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号  
        plt.rcParams['figure.dpi'] = 100  # 分辨率  
  
        for i in class_name:  
            data = len(list(pathlib.Path((directory + '\\' + i + '\\')).glob('*')))  
            plt.title('数据分类情况')  
            plt.grid(ls='--', alpha=0.5)  
            plt.bar(i, data)  
            plt.text(i, data, str(data), ha='center', va='bottom')  
            print("类别-{}:{}".format(i, data))  
            # temp_sum += data  
        plt.show()  
  
    # if temp_sum == total_image:  
    #     print("图片数据总数检查一致")  
    # else:    #     print("数据数据总数检查不一致,请检查数据集是否正确!")  
    return class_name  
  
  
def get_transforms_setting(size):  
    """  
    获取transforms的初始设置  
    :param size: 图片大小  
    :return: transforms.compose设置  
    """    transform_setting = {  
        'train': transforms.Compose([  
            transforms.Resize(size),  
            transforms.ToTensor(),  
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
        ]),  
        'test': transforms.Compose([  
            transforms.Resize(size),  
            transforms.ToTensor(),  
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  
        ])  
    }  
  
    return transform_setting  
  
  
# 训练循环  
def train(dataloader, device, model, loss_fn, optimizer):  
    size = len(dataloader.dataset)  # 训练集的大小  
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)  
  
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率  
  
    for X, y in dataloader:  # 获取图片及其标签  
        X, y = X.to(device), y.to(device)  
  
        # 计算预测误差  
        pred = model(X)  # 网络输出  
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失  
  
        # 反向传播  
        optimizer.zero_grad()  # grad属性归零  
        loss.backward()  # 反向传播  
        optimizer.step()  # 每一步自动更新  
  
        # 记录acc与loss  
        train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()  
        train_loss += loss.item()  
  
    train_acc /= size  
    train_loss /= num_batches  
  
    return train_acc, train_loss  
  
  
def test(dataloader, device, model, loss_fn):  
    size = len(dataloader.dataset)  # 测试集的大小  
    num_batches = len(dataloader)  # 批次数目, (size/batch_size,向上取整)  
    test_loss, test_acc = 0, 0  
  
    # 当不进行训练时,停止梯度更新,节省计算内存消耗  
    with torch.no_grad():  
        for imgs, target in dataloader:  
            imgs, target = imgs.to(device), target.to(device)  
  
            # 计算loss  
            target_pred = model(imgs)  
            loss = loss_fn(target_pred, target)  
  
            test_loss += loss.item()  
            test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()  
  
    test_acc /= size  
    test_loss /= num_batches  
  
    return test_acc, test_loss  
  
  
from PIL import Image  
  
def predict_one_image(image_path, device, model, transform, classes):  
    """  
    预测单张图片  
    :param image_path: 图片路径  
    :param device: CPU or GPU    :param model: cnn模型  
    :param transform:    :param classes:    :return:  
    """    test_img = Image.open(image_path).convert('RGB')  
    plt.imshow(test_img)  # 展示预测的图片  
  
    test_img = transform(test_img)  
    img = test_img.to(device).unsqueeze(0)  
  
    model.eval()  
    output = model(img)  
  
    _, pred = torch.max(output, 1)  
    pred_class = classes[pred]  
    print(f'预测结果是:{pred_class}')
2. config.py
import argparse  
  
def get_options(parser=argparse.ArgumentParser()):  
    parser.add_argument('--workers', type=int, default=0, help='Number of parallel workers')  
    parser.add_argument('--batch-size', type=int, default=4, help='input batch size, default=32')  
    parser.add_argument('--lr', type=float, default=1e-4, help='learning rate, default=0.0001')  
    parser.add_argument('--epochs', type=int, default=20, help='number of epochs')  
    parser.add_argument('--seed', type=int, default=112, help='random seed')  
    parser.add_argument('--save-path', type=str, default='./models/', help='path to save checkpoints')  
  
    opt = parser.parse_args()  
  
    if opt:  
        print(f'num_workers:{opt.workers}')  
        print(f'batch_size:{opt.batch_size}')  
        print(f'learn rate:{opt.lr}')  
        print(f'epochs:{opt.epochs}')  
        print(f'random seed:{opt.seed}')  
        print(f'save_path:{opt.save_path}')  
  
    return opt  
  
if __name__ == '__main__':  
    opt = get_options()
3. main.py
import torch  
import torch.nn.functional as F  
from sympy.codegen import Print  
from torch import nn  
from torchvision import transforms, datasets  
from Utils import USE_GPU, data_from_directory, get_transforms_setting, train, test, predict_one_image  
from config import get_options  
import warnings  
  
warnings.filterwarnings("ignore")  
  
opt = get_options()  
  
# 设置使用GPU  
device = USE_GPU()  
  
# 导入数据  
DATA_DIR = "./data/weather_photos"  
classNames = data_from_directory(DATA_DIR)  
  
transform = get_transforms_setting([224, 224])  
total_data = datasets.ImageFolder(DATA_DIR, transform=transform['train'])  
print(total_data)  
  
# 划分数据集  
train_size = int(0.8 * len(total_data))  
test_size = len(total_data) - train_size  
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])  
print(train_dataset, test_dataset)  
  
train_dl = torch.utils.data.DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True)  
test_dl = torch.utils.data.DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=True)  
for X, y in test_dl:  
    print("Shape of X[N, C, H, W]:", X.shape)  
    print("Shape of y:", y.shape, y.dtype)  
    break  
  
# 搭建模型  
def autopad(k, p=None):  # kernel, padding  
    # Pad to 'same'    if p is None:  
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad  
    return p  
  
  
class Conv(nn.Module):  
    # Standard convolution  
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups  
        super().__init__()  
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)  
        self.bn = nn.BatchNorm2d(c2)  
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())  
  
    def forward(self, x):  
        return self.act(self.bn(self.conv(x)))  
  
  
class Bottleneck(nn.Module):  
    # Standard bottleneck  
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion  
        super().__init__()  
        c_ = int(c2 * e)  # hidden channels  
        self.cv1 = Conv(c1, c_, 1, 1)  
        self.cv2 = Conv(c_, c2, 3, 1, g=g)  
        self.add = shortcut and c1 == c2  
  
    def forward(self, x):  
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))  
  
  
class C3(nn.Module):  
    # CSP Bottleneck with 3 convolutions  
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion  
        super().__init__()  
        c_ = int(c2 * e)  # hidden channels  
        self.cv1 = Conv(c1, c_, 1, 1)  
        self.cv2 = Conv(c1, c_, 1, 1)  
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)  
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))  
  
    def forward(self, x):  
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))  
  
  
class model_K(nn.Module):  
    def __init__(self):  
        super(model_K, self).__init__()  
  
        # 卷积模块  
        self.Conv = Conv(3, 32, 3, 2)  
  
        # C3模块1  
        self.C3_1 = C3(32, 64, 3, 2)  
  
        # 全连接网络层,用于分类  
        self.classifier = nn.Sequential(  
            nn.Linear(in_features=802816, out_features=100),  
            nn.ReLU(),  
            nn.Linear(in_features=100, out_features=4)  
        )  
  
    def forward(self, x):  
        x = self.Conv(x)  
        x = self.C3_1(x)  
        x = torch.flatten(x, start_dim=1)  
        x = self.classifier(x)  
  
        return x  
  
  
model = model_K().to(device)  
print(model)  
  
# 查看模型详情  
import torchsummary as summary  
summary.summary(model, (3, 224, 224))  
  
# 正式训练  
import copy  
  
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)  
loss_fn = nn.CrossEntropyLoss()  # 创建损失函数  
  
epochs = 20  
  
train_loss = []  
train_acc = []  
test_loss = []  
test_acc = []  
  
best_acc = 0  # 设置一个最佳准确率,作为最佳模型的判别指标  
  
for epoch in range(epochs):  
  
    model.train()  
    epoch_train_acc, epoch_train_loss = train(train_dl, device, model, loss_fn, optimizer)  
  
    model.eval()  
    epoch_test_acc, epoch_test_loss = test(test_dl, device, model, loss_fn)  
  
    # 保存最佳模型到 best_model    if epoch_test_acc > best_acc:  
        best_acc = epoch_test_acc  
        best_model = copy.deepcopy(model)  
  
    train_acc.append(epoch_train_acc)  
    train_loss.append(epoch_train_loss)  
    test_acc.append(epoch_test_acc)  
    test_loss.append(epoch_test_loss)  
  
    # 获取当前的学习率  
    lr = optimizer.state_dict()['param_groups'][0]['lr']  
  
    template = 'Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}'  
    print(template.format(epoch + 1, epoch_train_acc * 100, epoch_train_loss,  
                          epoch_test_acc * 100, epoch_test_loss, lr))  
  
# 保存最佳模型到文件中  
PATH = './models/weather-yolov5.pth'  # 保存的参数文件名  
torch.save(model.state_dict(), PATH)  
  
print('Done')  
  
# 模型训练结果可视化  
import matplotlib.pyplot as plt  
#隐藏警告  
import warnings  
warnings.filterwarnings("ignore")               #忽略警告信息  
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签  
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号  
plt.rcParams['figure.dpi']         = 100        #分辨率  
  
from datetime import datetime  
current_time = datetime.now() # 获取当前时间  
  
epochs_range = range(epochs)  
  
plt.figure(figsize=(12, 3))  
plt.subplot(1, 2, 1)  
  
plt.plot(epochs_range, train_acc, label='Training Accuracy')  
plt.plot(epochs_range, test_acc, label='Test Accuracy')  
plt.legend(loc='lower right')  
plt.title('Training and Validation Accuracy')  
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效  
  
plt.subplot(1, 2, 2)  
plt.plot(epochs_range, train_loss, label='Training Loss')  
plt.plot(epochs_range, test_loss, label='Test Loss')  
plt.legend(loc='upper right')  
plt.title('Training and Validation Loss')  
plt.show()  
  
  
# 评估模型  
best_model.eval()  
epoch_test_acc, epoch_test_loss = test(test_dl, device, best_model, loss_fn)  
print(epoch_test_acc, epoch_test_loss)

运行结果:

num_workers:0
batch_size:4
learn rate:0.0001
epochs:20
random seed:112
save_path:./models/
CUDA is available, will use GPU
数据目录:./data/weather_photos
数据分类: ['cloudy', 'rain', 'shine', 'sunrise'], 类别数量:4
图片数据总数: 1125
Dataset ImageFolder
    Number of datapoints: 1125
    Root location: ./data/weather_photos
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
<torch.utils.data.dataset.Subset object at 0x000001A399B6BC70> <torch.utils.data.dataset.Subset object at 0x000001A399B6BBB0>
Shape of X[N, C, H, W]: torch.Size([4, 3, 224, 224])
Shape of y: torch.Size([4]) torch.int64
Using cuda device
model_K(
  (Conv): Conv(
    (conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
    (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (act): SiLU()
  )
  (C3_1): C3(
    (cv1): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv2): Conv(
      (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (cv3): Conv(
      (conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
      (bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (act): SiLU()
    )
    (m): Sequential(
      (0): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (1): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
      (2): Bottleneck(
        (cv1): Conv(
          (conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
        (cv2): Conv(
          (conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          (bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (act): SiLU()
        )
      )
    )
  )
  (classifier): Sequential(
    (0): Linear(in_features=802816, out_features=100, bias=True)
    (1): ReLU()
    (2): Linear(in_features=100, out_features=4, bias=True)
  )
)
----------------------------------------------------------------
        Layer (type)               Output Shape         Param #
================================================================
            Conv2d-1         [-1, 32, 112, 112]             864
       BatchNorm2d-2         [-1, 32, 112, 112]              64
              SiLU-3         [-1, 32, 112, 112]               0
              Conv-4         [-1, 32, 112, 112]               0
            Conv2d-5         [-1, 32, 112, 112]           1,024
       BatchNorm2d-6         [-1, 32, 112, 112]              64
              SiLU-7         [-1, 32, 112, 112]               0
              Conv-8         [-1, 32, 112, 112]               0
            Conv2d-9         [-1, 32, 112, 112]           1,024
      BatchNorm2d-10         [-1, 32, 112, 112]              64
             SiLU-11         [-1, 32, 112, 112]               0
             Conv-12         [-1, 32, 112, 112]               0
           Conv2d-13         [-1, 32, 112, 112]           9,216
      BatchNorm2d-14         [-1, 32, 112, 112]              64
             SiLU-15         [-1, 32, 112, 112]               0
             Conv-16         [-1, 32, 112, 112]               0
       Bottleneck-17         [-1, 32, 112, 112]               0
           Conv2d-18         [-1, 32, 112, 112]           1,024
      BatchNorm2d-19         [-1, 32, 112, 112]              64
             SiLU-20         [-1, 32, 112, 112]               0
             Conv-21         [-1, 32, 112, 112]               0
           Conv2d-22         [-1, 32, 112, 112]           9,216
      BatchNorm2d-23         [-1, 32, 112, 112]              64
             SiLU-24         [-1, 32, 112, 112]               0
             Conv-25         [-1, 32, 112, 112]               0
       Bottleneck-26         [-1, 32, 112, 112]               0
           Conv2d-27         [-1, 32, 112, 112]           1,024
      BatchNorm2d-28         [-1, 32, 112, 112]              64
             SiLU-29         [-1, 32, 112, 112]               0
             Conv-30         [-1, 32, 112, 112]               0
           Conv2d-31         [-1, 32, 112, 112]           9,216
      BatchNorm2d-32         [-1, 32, 112, 112]              64
             SiLU-33         [-1, 32, 112, 112]               0
             Conv-34         [-1, 32, 112, 112]               0
       Bottleneck-35         [-1, 32, 112, 112]               0
           Conv2d-36         [-1, 32, 112, 112]           1,024
      BatchNorm2d-37         [-1, 32, 112, 112]              64
             SiLU-38         [-1, 32, 112, 112]               0
             Conv-39         [-1, 32, 112, 112]               0
           Conv2d-40         [-1, 64, 112, 112]           4,096
      BatchNorm2d-41         [-1, 64, 112, 112]             128
             SiLU-42         [-1, 64, 112, 112]               0
             Conv-43         [-1, 64, 112, 112]               0
               C3-44         [-1, 64, 112, 112]               0
           Linear-45                  [-1, 100]      80,281,700
             ReLU-46                  [-1, 100]               0
           Linear-47                    [-1, 4]             404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
----------------------------------------------------------------
Epoch: 1, Train_acc:69.0%, Train_loss:1.549, Test_acc:78.2%, Test_loss:0.632, Lr:1.00E-04
Epoch: 2, Train_acc:86.2%, Train_loss:0.429, Test_acc:82.7%, Test_loss:0.521, Lr:1.00E-04
Epoch: 3, Train_acc:91.8%, Train_loss:0.225, Test_acc:85.3%, Test_loss:0.512, Lr:1.00E-04
Epoch: 4, Train_acc:92.0%, Train_loss:0.220, Test_acc:91.6%, Test_loss:0.435, Lr:1.00E-04
Epoch: 5, Train_acc:94.6%, Train_loss:0.187, Test_acc:87.6%, Test_loss:0.564, Lr:1.00E-04
Epoch: 6, Train_acc:96.0%, Train_loss:0.118, Test_acc:88.0%, Test_loss:0.536, Lr:1.00E-04
Epoch: 7, Train_acc:98.1%, Train_loss:0.073, Test_acc:91.1%, Test_loss:0.551, Lr:1.00E-04
Epoch: 8, Train_acc:99.0%, Train_loss:0.045, Test_acc:87.1%, Test_loss:0.665, Lr:1.00E-04
Epoch: 9, Train_acc:99.0%, Train_loss:0.029, Test_acc:88.9%, Test_loss:0.560, Lr:1.00E-04
Epoch:10, Train_acc:98.9%, Train_loss:0.028, Test_acc:83.6%, Test_loss:1.033, Lr:1.00E-04
Epoch:11, Train_acc:98.9%, Train_loss:0.046, Test_acc:86.7%, Test_loss:0.870, Lr:1.00E-04
Epoch:12, Train_acc:98.1%, Train_loss:0.058, Test_acc:89.3%, Test_loss:0.658, Lr:1.00E-04
Epoch:13, Train_acc:98.4%, Train_loss:0.076, Test_acc:87.6%, Test_loss:0.628, Lr:1.00E-04
Epoch:14, Train_acc:96.6%, Train_loss:0.157, Test_acc:88.0%, Test_loss:0.885, Lr:1.00E-04
Epoch:15, Train_acc:98.1%, Train_loss:0.133, Test_acc:88.9%, Test_loss:0.922, Lr:1.00E-04
Epoch:16, Train_acc:98.4%, Train_loss:0.050, Test_acc:88.0%, Test_loss:0.976, Lr:1.00E-04
Epoch:17, Train_acc:99.6%, Train_loss:0.024, Test_acc:88.0%, Test_loss:0.922, Lr:1.00E-04
Epoch:18, Train_acc:98.7%, Train_loss:0.059, Test_acc:89.8%, Test_loss:0.885, Lr:1.00E-04
Epoch:19, Train_acc:98.9%, Train_loss:0.053, Test_acc:90.2%, Test_loss:0.727, Lr:1.00E-04
Epoch:20, Train_acc:99.0%, Train_loss:0.040, Test_acc:82.7%, Test_loss:2.917, Lr:1.00E-04
Done
0.9155555555555556 0.4347304363102905

进程已结束,退出代码为 0

image.png


评论